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Abstract 

Cryptography has significant potential to enrich mathematics education. Besides its direct relation to mathematics, 
cryptography can also be used as a novel method for teaching mathematics at the school level. The cryptographic method 
offers a fresh perspective on mathematics lessons and can change students' views of mathematics more positively. The 
Caesar Cipher cryptography is one of the most straightforward and well-known cryptographic techniques for encrypting and 
decrypting text. This research aims to implement cryptography in mathematics learning based on Realistic Mathematics 
Education (RME) for the modulo material. The type of research used is library research. The research data were collected 
from several books on cryptography and several journals on cryptography and mathematics education. The results of this 
study indicate the implementation of mathematics learning in the form of modulo concepts in Caesar ciphers at the Sandi 
Museum in Yogyakarta. These mathematical concepts can be utilized to introduce and understand interesting and realistic 
mathematical concepts. 
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Introduction  

Mathematics has played a crucial role in human civilization, from its origins in Babylon and Egypt 

to its development through the 19th and 20th centuries (Howson, 1974; Geiges, 2000; Alisherovich, 2023). 

Mathematics involves logical reasoning that starts from agreed-upon definitions and leads to definite 

implications (Durand-Guerrier, 2003; Priest, 2023). Therefore, the inability to understand mathematics 

can result in losing disciplined thinking when faced with real-world problems (Abdullah et al., 2012; 

Schoenfeld, 2016; Sinaga et al., 2023). However, mathematics education faces significant challenges 

(Stephan et al., 2015; Rosyada & Retnawati, 2021; Suryanti et al., 2023). One of these challenges is 

transforming the approach to teaching mathematics from a deductive and doctrinaire method to an 

approach that allows students to discover mathematical concepts realistically (Gee et al., 2018). In other 

words, mathematics teaching in schools should only focus on memorizing formulas and understanding 

their origins. Instead, mathematics teaching in schools should be directed toward learning mathematical 

concepts related to realistic problems (Sumirattana et al., 2017; Hang & Thanh, 2021; Caraan et al., 

2023). 

Freudenthal introduced the Realistic Mathematics Education (RME) approach to help teachers 

design mathematics learning that engages students more, allowing them to understand the concepts 

taught easily (Traffers, 1993; Webb et al., 2011; Loc & Tien, 2020). The RME approach emphasizes using 
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real-world contexts relevant to students' daily lives (Gravemeijer & Doorman, 1999; Negara et al., 2021). 

Additionally, RME uses realistic problems as a starting point for understanding mathematical concepts 

(Sitorus, 2016; Octaria et al., 2023). These realistic problems can increase students' motivation and 

interest in mathematics (Ardiansah et al., 2019; Prahmana et al., 2020). Consequently, students can see 

that mathematics is related to their daily activities, making the knowledge gained more meaningful. 

According to Gravemeijer (1994), RME is based on three main principles: guided reinvention and 

progressive mathematization, didactical phenomenology, and self-developed models. In progressive 

mathematics, students can work with mathematics according to their experiences. Didactical 

phenomenology involves providing problems that lead students to understand mathematical concepts. 

Gravemeijer (1994) also identified five characteristics of RME: (1) The Use of Context; (2) Use of 

Models, Bridging by Vertical Instruments; (3) Student Contribution; (4) Interactivity; and (5) Intertwining 

with Other Topics. Students are expected to solve real-world problems informally. Self-developed models 

are used to connect informal knowledge with formal knowledge. According to Treffers and Goffree (in 

Erman, 2003), contextual problems in RME have four main functions: (1) helping students form 

mathematical concepts, (2) forming basic mathematical models that support students' mathematical 

thinking, (3) utilizing reality as a source and domain of mathematical application, and (4) training students' 

ability to apply mathematics to real situations. The reality referred to here is a relevant context. 

RME is based on three main principles: guided reinvention and progressive mathematization, 

didactical phenomenology, and self-developed models. One mathematical topic that encompasses 

various advanced mathematical theories is cryptography (Silverman et al., 2008; Budaghyan et al., 2019). 

Cryptography is the science and art of keeping messages or data secret (Silverman et al., 2008). In 

everyday life, cryptography is closely related to using passwords, banking data security, and national 

security data protection. 

Therefore, cryptography meets one of the essential requirements for applying RME-based learning: 

the alignment between mathematical concepts and accurate and relevant situations in daily life. However, 

cryptography is only partially suitable for teaching at the secondary school level. The highly advanced 

mathematical concepts in cryptography do not align with the secondary education curriculum. Additionally, 

cryptography requires high-specification computers and sophisticated cryptographic machines, which are 

difficult to present in the learning process. Therefore, the authors attempt to address this challenge by 

exploring the modulo concept in RME-based mathematics learning. 

 

Methods  

The type of research used in this study is library research. Library research collects necessary data 
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from books, journals, or previous research results (Mirzaqon & Purwoko, 2018). This study selected 

several books on cryptography and several journals on cryptography and mathematics education. 

Furthermore, Paar and Pelzl (2010) was the primary reference for studying cryptography materials. 

Several articles and journals on cryptography, modulo, matrices, and realistic mathematics were selected. 

Nisak (2015) served as the primary reference for understanding Caesar Cipher and Hill Cipher 

cryptography. On the other hand, Mubarak’s research (2019) was used as a reference for examining 

realistic mathematics education. Finally, Ginting’s exploration (2010) was used to understand modulo 

material. Other journals related to the title of this research were also used. 

 

Results and Discussions   

Several researchers have documented their findings, demonstrating the effectiveness of Realistic 

Mathematics Education (RME) in mathematics teaching (Fitri et al., 2023). Research by Laurens et al. 

(2017) indicates that teachers must empower students' intellectual abilities through RME and games to 

achieve meaningful and contextual learning. Additionally, Widodo et al. (2023) show that the RME 

approach significantly enhances mathematical problem-solving skills at the elementary school level. 

Furthermore, findings by Muhtarom et al. (2019) suggest that the multi-representation abilities of students 

who receive RME are better than those of students who receive conventional learning. 

These research results highlight the potential impact of the RME approach in improving 

mathematics learning outcomes while also reinforcing the core of education, which is students' character 

formation. This paper focuses on implementing cryptographic algorithms within RME-based learning to 

understand the concept of modulo. The discussion will be divided into three sub-discussions: the basics 

of cryptography, the implementation of cryptography in RME-based learning, and understanding the 

concept of modulo. 

 

The Basics of Cryptography 

These research results highlight the potential impact of the RME approach in improving 

mathematics learning outcomes while also reinforcing the core of education, which is students' character 

formation. This paper focuses on implementing cryptographic algorithms within RME-based learning to 

understand the concept of modulo. The discussion word cryptography consists of two parts derived from 

Greek: "crypto" and "graphia," where "crypto" can be translated as secret, and "graphia" as writing. 

Linguistically, cryptography originates from Greek, composed of two words: "cryptos," meaning secret, 

and "graphene," meaning writing (Schneier, 2007). Terminologically, cryptography can be defined as the 

science of writing secret messages to hide the meaning of the messages (Paar & Pelzl, 2010). According 
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to its terminology, cryptography is the science and art of securing messages when sending them from 

one place to another (Bryant, 2006). be divided into three sub-discussions: the basics of cryptography, 

the implementation of cryptography in RME-based learning, and understanding the concept of modulo. 

Cryptography is a science that analyzes mathematical techniques related to data security, such as 

data hiding, data validity, data integrity, and data authenticity (Schneier, 1996). Cryptography is the 

science and art of protecting messages to remain secure. The purpose of cryptography is to create 

something obscure in the form of secret messages like text, audio, images, and video (Seftyanto et al., 

2012). Generally, cryptography is the science and art of maintaining the confidentiality of messages. 

One practical application of cryptography is in sending secret messages. Two parties 

communicating secretly or sending messages containing confidential information require cryptography to 

maintain the secrecy of the message. This is done to prevent unauthorized third parties from 

understanding the meaning of the secret message. In secret message transmission, cryptography plays 

a role in encoding the original readable message (plaintext) into an unreadable coded message 

(ciphertext) and converting the ciphertext back into plaintext (Dafid, 2006). The goal of cryptography is to 

provide security services (Nasution et al., 2019) which include: 

a. Confidentiality 

Confidentiality is a service that keeps information content hidden from anyone except those with the 

authority or the secret key to decrypt the information. Data confidentiality is achieved by hiding data from 

unauthorized individuals. 

b. Integrity 

Data integrity relates to protecting data from unauthorized modifications. To maintain data integrity, the 

system must be able to detect data manipulation by unauthorized parties, such as insertion, deletion, and 

substitution of data. Data should remain unchanged until it reaches the recipient during the transmission 

process. 

c.  Message Authentication 

Authentication relates to identification, both of the system and the information itself. Two communicating 

parties must mutually identify themselves. Information sent through the channel must be authenticated 

for its authenticity, data content, transmission time, etc. Clear identity of all related entities and data source 

authentication is necessary. 

d. Non-repudiation 

Non-repudiation is the effort to prevent the denial of sending or creating information by the sender or 

creator. Each related entity cannot deny or refute the sent or received data.  
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Several critical aspects of cryptography to be aware of include (Nasution et al., 2019): 

a. Sender and Receiver 

The sender is the entity that sends the message to the receiver securely without interference from 

eavesdroppers. The receiver is the entity that receives the message from the sender. 

b. Plaintext dan Ciphertext  

In cryptography, the pure message is called plaintext, while the obscured message is called ciphertext. 

c. Encryption and Decryption 

The process of converting plaintext to ciphertext is called encryption, and the process of converting 

ciphertext back to plaintext is called decryption. 

d. Cryptographers, Cryptanalysts, and Cryptologists 

A cryptographer studies and uses cryptographic methods to protect messages. Conversely, the methods 

used to attack cryptographic techniques using computational mathematics are called cryptanalysis, and 

those involved in cryptanalysis are called cryptanalysts. The discipline of studying both cryptography and 

cryptanalysis is known as cryptology, and those who study it are called cryptologists. 

e. Ciphers  

An encryption algorithm is a mathematical function used for encryption and decryption. To solve 

encryption problems, a unit called a key is required, which has a tremendous numerical value. The size 

of this value is called the critical range. Some encryption algorithms use different keys for encryption and 

decryption. 

f. Eavesdropper 

An eavesdropper is a person who wants to gather as much information as possible about the transmitted 

message and decipher the ciphertext from the encryption system. The eavesdropper intercepts the 

communication between the sender and the receiver. 

 

The Caesar cipher, or shift cipher, is a straightforward and popular encryption method in 

cryptography. This code substitutes each letter in the original text (plaintext) with another letter a certain 

number of positions down the alphabet. In the Caesar cipher, letters are shifted by a fixed number of 

positions in the alphabet. 

 

Implementation of Cryptography in RME Mathematics Learning for Understanding Modulo 

Concepts 

In cryptography, the Caesar cipher, or the shift cipher, is a straightforward and widely used 

encryption method. This code involves substituting each letter in the plaintext with another letter that is a 

fixed number of positions away in the alphabet. In the Caesar cipher, letters are shifted to the following 
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letter in the alphabet by a specified amount. The Caesar cipher, also known as the shift cipher or Caesar 

shift, is one of the most basic, straightforward, and well-known encryption techniques. This cipher involves 

shifting letters by a certain number of positions. The result of this shift is the Caesar cipher text. For 

example, if 𝑛=3, the phrase "Aku ingin mandi" becomes "Dnx lqjlq pdqgl." The process of the Caesar 

Cipher is: 

1. Determine the number of character positions to shift to create the ciphertext from the plaintext. 

2. Substitute the position of the plaintext characters with the ciphertext characters based on the 

previously determined shift. For example, with a shift of 3, the letter A becomes D, B becomes 

E, and so on. As shown in the following image 

 

Figure 1. Caesar Cipher Illustration 

The steps of Caesar encryption are often included as part of more complex encryptions, such as 

the Vigenère cipher. Due to its use of a single alphabet substitution in encryption, the Caesar cipher can 

be easily broken. In practice, it provides less assurance of confidentiality and security in communication. 

The Caesar cipher uses a shift of three letters. As shown in Table 1 and Table 2 

Table 1: Caesar Cipher Plain 

Plain 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

 

Table 2: Caesar Cipher Ciphertext 

Cipher 

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 

 

To create ciphertext, you must match the letters between the plaintext and ciphertext alphabet. To 

determine the plaintext, perform the reverse process. 

→ Plaintext: THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG  

→ Ciphertext: WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ  
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Encryption can also be represented using modular arithmetic by first transforming letters into 

numbers. A=0, B=1, ..., Z=25. Encrypting a letter 𝑥 with a shift n can be mathematically described as: 

Eₙ(x)=(x+n) mod 26 

The representation for decryption is not much different, which is: 

Dₙ(x)=(x-n) mod 26 

The decryption process uses the following equation: 
Cp= (Pt + k ) modulo 26…….…(1)  

Where 26 is the number of letters in the alphabet. Equation 1 is used in the encryption process. The 

decryption process uses the following equation (Equation 2): 

Pt= (Cp-k) modulo 26 …………(2)  

The Caesar cipher is a type of substitution cipher where the cipher is created by substituting 

characters from the plaintext with characters from the ciphertext. This method is known as a single-

character password cipher. 

The steps to create plaintext using the Caesar cipher are as follows: 

a. Determine the number of character shifts used to transform the word into ciphertext. 

b. Convert the characters of the word based on the shift. For example, with a shift of 3, the letter 

A becomes D, B becomes E, and so on. The alphabet format after shifting 3 letters is shown in the 

following substitution table: 

Table 4. Substitution Table for ROT 3 

Index 0 1 2 3 4 5 6 7 8 9 10 12 13 

P A B C D E F G H I J K L M 

C D E F G H I J K L M N O P 

Index 13 14 15 16 17 18 19 20 21 22 23 24 25 

P N O P Q R S T U V W X Y Z 

C Q R S T U V W X Y Z A B C 

 

In the first case, the cipher can be solved using techniques similar to simple substitution ciphers, 

such as frequency analysis or word patterns. While solving, the decoder will recognize the regularity of 

the solution and conclude that the algorithm used in the code is the Caesar cipher. 

In the second example, decoding the code is more straightforward. Since it is already known that 

the code is the result of Caesar cipher encryption and there are only a limited number of possible shifts 
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(26), the code can be tested randomly using what is known as a brute force attack. This involves writing 

ciphertext segments in a table of possibilities for all possible shifts—a technique known as "completing 

the components." For example, given the ciphertext "EXXEGOEXSRGI," it can be seen that the possible 

plaintext is "ATTACKATONCE," where the letter shift is 4. As shown in Figure 2. 

 

 

Figure 2. Illustration of Caesar Cipher Shift 

Another random method is to match the frequency distribution of letters. In English, the distribution 

of letters in sample texts has a specific and predictable shape. The Caesar shift rotates this distribution, 

and it is quite possible to determine the shift by examining the results from the frequency graph. One can 

quickly determine the letter shift by analyzing the graph by plotting the frequency graph of letter 

occurrences in the ciphertext and comparing it with the expected distribution of letters in the original 

plaintext language. This method is known as frequency analysis. For example, in English, the frequency 

of the letters E and T (which usually appear most frequently) and Q and Z (which usually appear least 

frequently) is very characteristic. Computers can also measure how well the actual frequency distribution 

matches the expected distribution, for example, using chi-square distribution (statistics). 

There is usually only one reasonable decryption possibility for plaintext in a common language, 

although very short plaintexts may have more candidates. For example, the ciphertext MPQY (in English) 

could be decrypted as “Aden” or “know”; similarly, “ALIIP” could be “dolls” or “wheel,” and “AFCCP” could 

be “jolly” or “cheer.” 

Calculating Caesar Cipher 

The first step is for the teacher to divide the students into two groups, for example, Group A and 

Group B. The teacher sends a hidden message to Group A. For instance, the message could be "the 
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world of mathematics." Group A is asked to convert the message into a secret code through the encryption 

process as follows: 

Encryption Process: 

a. The teacher asks the students to convert the message from letters to numbers as follows: 

Table 5: Caesar Cipher Calculation 

A B C D E F G H I J K L M 

0 1 2 3 4 5 6 7 8 9 10 11 12 

N O P Q R S T U V W X Y Z 

13 14 15 16 17 18 19 20 21 22 23 24 25 

 

Given Message   : PENDIDIKAN MATEMATIKA 

Encoded as plaintext P  :15 4 13 3 8 3 8 10 0 13 12 0 19 4 12 0 19 8 10 0 

 

In the second step, the teacher provides a key, for example, 10. The students are instructed to add 10 

to each number in P. If the resulting number exceeds 25, the teacher asks them to subtract 26 from the 

result. Mathematically, the encryption process in the Caesar Cipher is carried out as follows: 

 

C=(K+P) mod 26 

C = Cyphertext 

K = Key 

P = Plaintext 

Key: 10 

C₁= (K+P₁) mod 26=(10+15)mod 26=25 mod 26=25=Z  

C₂= (10+4) mod 26=14 mod 26=14=O 

C₃= (10+13) mod 26=23 mod 26=23=X 

C₄= (10+3) mod 26=13 mod 26=13=N 

C₅= (10+8) mod 26=18 mod 26=18=S 

C₆= (10+3) mod 26=13 mod 26=13=N 

C₇=(10+8 ) mod 26=18 mod 26=18=S 

C₈=(10+10) mod 26=20 mod 26=20=U 

C₉=(10+0) mod 26=10 mod 26=10=K 

C₁₀=(10+13) mod 26=23 mod 26=23=X 

C₁₁=(10+12) mod 26=22 mod 26=22=W 

C₁₂=(10+0) mod 26=10 mod 26=10=K 

C₁₃=(10+19) mod 26=29 mod 26=3=D 

C₁₄=(10+4) mod 26=14 mod 26=14=O 

C₁₅=(10+12) mod 26=22 mod 26=22=W 

C₁₆=(10+0) mod 26=10 mod 26=10=K 
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C₁₇=(10+19) mod 26=29 mod 26=3=D 

C₁₈=(10+8) mod 26=18 mod 26=18=S 

C₁₉=(10+10) mod 26=20 mod 26=20=U 

C₂₀=(10+0) mod 26=10 mod 26=10=K 

 

The message= PENDIDIKAN MATEMATIKA in encrypted into C= ZOXNSNSUKXWKDOWKDSUK 

Decryption Process: 

After Group A completes the encryption process, the teacher asks Group B to interpret the contents of 

the secret message. The steps taken are: 

a. First, convert the ciphertext back into numbers, as in the initial encryption process. 

𝐶 = ZOXNSNSUKXWKDOWKDSUK 

Translates to: 𝐶 = 25 14 23 13 18 13 18 20 10 23 22 10 3 14 22 10 3 18 20 10  

 

b. Then, the teacher informs the students that the key is 10. The students should subtract ten 

from each number. If the result is a negative number, they should add 26 or its multiples to 

the result. Mathematically, the decryption process in the Caesar Cipher is as follows: 

𝑃 = (𝐶 − 𝐾) 𝑚𝑜𝑑 26 

C = Cyphertext 

K = Key 

P = Plaintext 

Key: 10 

𝑃₁ = (𝐶₁ − 𝐾)𝑚𝑜𝑑 26 = (25 − 10)𝑚𝑜𝑑26 = 15 𝑚𝑜𝑑 26 = 15 = 𝑃 

𝑃₂ = (14 − 10)𝑚𝑜𝑑 26 = 4 𝑚𝑜𝑑 26 = 4 = 𝐸 

𝑃₃ = (23 − 10)𝑚𝑜𝑑 26 = 13 𝑚𝑜𝑑 26 = 13 = 𝑁 

𝑃₄ = (13 − 10)𝑚𝑜𝑑 26 = 3 𝑚𝑜𝑑 26 = 3 = 𝐷 

𝑃₅ = (18 − 10)𝑚𝑜𝑑 26 = 8 𝑚𝑜𝑑 26 = 8 = 𝐼 

𝑃₆ = (13 − 10)𝑚𝑜𝑑 26 = 3 𝑚𝑜𝑑 26 = 3 = 𝐷 

𝑃₇ = (18 − 10)𝑚𝑜𝑑 26 = 8 𝑚𝑜𝑑 26 = 8 = 𝐼 

𝑃₈ = (20 − 10)𝑚𝑜𝑑 26 = 10 𝑚𝑜𝑑 26 = 10 = 𝐾 

𝑃₉ = (10 − 10)𝑚𝑜𝑑 26 = 0 𝑚𝑜𝑑 26 = 0 = 𝐴 

𝑃₁₀ = (23 − 10)𝑚𝑜𝑑 26 = 13 𝑚𝑜𝑑 26 = 13 = 𝑁 

𝑃₁₁ = (22 − 10)𝑚𝑜𝑑 26 = 12 𝑚𝑜𝑑 26 = 12 = 𝑀 

𝑃₁₂ = (10 − 10)𝑚𝑜𝑑 26 = 0 𝑚𝑜𝑑 26 = 0 = 𝐴 

𝑃₁₃ = (3 − 10)𝑚𝑜𝑑 26 = −7𝑚𝑜𝑑 26 = 19 = 𝑇 

𝑃₁₄ = (14 − 10)𝑚𝑜𝑑 26 = 4 𝑚𝑜𝑑 26 = 4 = 𝐸 

𝑃₁₅ = (22 − 10)𝑚𝑜𝑑 26 = 12 𝑚𝑜𝑑 26 = 12 = 𝑀 

𝑃₁₆ = (10 − 10)𝑚𝑜𝑑 26 = 0 𝑚𝑜𝑑 26 = 0 = 𝐴 
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𝑃₁₇ = (3 − 10)𝑚𝑜𝑑 26 = −7𝑚𝑜𝑑 26 = 19 = 𝑇 

𝑃₁₈ = (18 − 10)𝑚𝑜𝑑 26 = 8 𝑚𝑜𝑑 26 = 8 = 𝐼 

𝑃₁₉ = (20 − 10)𝑚𝑜𝑑 26 = 10 𝑚𝑜𝑑 26 = 10 = 𝐾 

𝑃₂₀ = (10 − 10)𝑚𝑜𝑑 26 = 0 𝑚𝑜𝑑 26 = 0 = 𝐴 

 

 Based on the above description, the result is returned to the original message: PENDIDIKAN 

MATEMATIKA. Based on this result, the teacher explained to the students that what was done involved 

the concept of modulo. The teacher then guides the students in understanding the concept of modulo. 

 

Conclusion  

Cryptography can be used in mathematics education in schools. As a new method, besides 

providing a fresh approach to teaching, cryptography also offers other positive impacts, such as teaching 

students to think more critically when solving problems. The Caesar Cipher cryptographic algorithm can 

be applied to modulo concepts by sending secret messages between students in a classroom. Activities 

that present messages in role-playing games are one of the learning programs that bring mathematics to 

life. Cryptographic media is not limited to modulo concepts and is used for educational purposes. Other 

materials that can be explored with cryptography include data collection and analysis related to function 

composition and inverse composition. 
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